skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haddadi, Hamed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. Federated learning involves training statistical models over edge devices such as mobile phones such that the training data are kept local. Federated Learning (FL) can serve as an ideal candidate for training spatial temporal models that rely on heterogeneous and potentially massive numbers of participants while preserving the privacy of highly sensitive location data. However, there are unique challenges involved with transitioning existing spatial temporal models to federated learning. In this survey article, we review the existing literature that has proposed FL-based models for predicting human mobility, traffic prediction, community detection, location-based recommendation systems, and other spatial-temporal tasks. We describe the metrics and datasets these works have been using and create a baseline of these approaches in comparison to the centralized settings. Finally, we discuss the challenges of applying spatial-temporal models in a decentralized setting and by highlighting the gaps in the literature we provide a road map and opportunities for the research community. 
    more » « less
  3. Consumer Internet of Things (IoT) devices are increasingly common, from smart speakers to security cameras, in homes. Along with their benefits come potential privacy and security threats. To limit these threats a number of commercial services have become available (IoT safeguards). The safeguards claim to provide protection against IoT privacy risks and security threats. However, the effectiveness and the associated privacy risks of these safeguards remains a key open question. In this paper, we investigate the threat detection capabilities of IoT safeguards for the first time. We develop and release an approach for automated safeguards experimentation to reveal their response to common security threats and privacy risks. We perform thousands of automated experiments using popular commercial IoT safeguards when deployed in a large IoT testbed. Our results indicate not only that these devices may be ineffective in preventing risks, but also their cloud interactions and data collection operations may introduce privacy risks for the households that adopt them. 
    more » « less
  4. null (Ed.)
    Abstract Despite the prevalence of Internet of Things (IoT) devices, there is little information about the purpose and risks of the Internet traffic these devices generate, and consumers have limited options for controlling those risks. A key open question is whether one can mitigate these risks by automatically blocking some of the Internet connections from IoT devices, without rendering the devices inoperable. In this paper, we address this question by developing a rigorous methodology that relies on automated IoT-device experimentation to reveal which network connections (and the information they expose) are essential, and which are not. We further develop strategies to automatically classify network traffic destinations as either required ( i.e. , their traffic is essential for devices to work properly) or not, hence allowing firewall rules to block traffic sent to non-required destinations without breaking the functionality of the device. We find that indeed 16 among the 31 devices we tested have at least one blockable non-required destination, with the maximum number of blockable destinations for a device being 11. We further analyze the destination of network traffic and find that all third parties observed in our experiments are blockable, while first and support parties are neither uniformly required or non-required. Finally, we demonstrate the limitations of existing blocklists on IoT traffic, propose a set of guidelines for automatically limiting non-essential IoT traffic, and we develop a prototype system that implements these guidelines. 
    more » « less
  5. null (Ed.)
    Internet of Things (IoT) devices are becoming increasingly popular and offer a wide range of services and functionality to their users. However, there are significant privacy and security risks associated with these devices. IoT devices can infringe users' privacy by ex-filtrating their private information to third parties, often without their knowledge. In this work we investigate the possibility to identify IoT devices and their location in an Internet Service Provider's network. By analyzing data from a large Internet Service Provider (ISP), we show that it is possible to recognize specific IoT devices, their vendors, and sometimes even their specific model, and to infer their location in the network. This is possible even with sparsely sampled flow data that are often the only datasets readily available at an ISP. We evaluate our proposed methodology to infer IoT devices at subscriber lines of a large ISP. Given ground truth information on IoT devices location and models, we were able to detect more than 77% of the studied IoT devices from sampled flow data in the wild. 
    more » « less
  6. Abstract Internet-connected voice-controlled speakers, also known as smart speakers , are increasingly popular due to their convenience for everyday tasks such as asking about the weather forecast or playing music. However, such convenience comes with privacy risks: smart speakers need to constantly listen in order to activate when the “wake word” is spoken, and are known to transmit audio from their environment and record it on cloud servers. In particular, this paper focuses on the privacy risk from smart speaker misactivations , i.e. , when they activate, transmit, and/or record audio from their environment when the wake word is not spoken. To enable repeatable, scalable experiments for exposing smart speakers to conversations that do not contain wake words, we turn to playing audio from popular TV shows from diverse genres. After playing two rounds of 134 hours of content from 12 TV shows near popular smart speakers in both the US and in the UK, we observed cases of 0.95 misactivations per hour, or 1.43 times for every 10,000 words spoken, with some devices having 10% of their misactivation durations lasting at least 10 seconds. We characterize the sources of such misactivations and their implications for consumers, and discuss potential mitigations. 
    more » « less
  7. null (Ed.)
    Consumer Internet of Things (IoT) devices are extremely popular, providing users with rich and diverse functionalities, from voice assistants to home appliances. These functionalities often come with significant privacy and security risks, with notable recent large-scale coordinated global attacks disrupting large service providers. Thus, an important first step to address these risks is to know what IoT devices are where in a network. While some limited solutions exist, a key question is whether device discovery can be done by Internet service providers that only see sampled flow statistics. In particular, it is challenging for an ISP to efficiently and effectively track and trace activity from IoT devices deployed by its millions of subscribers---all with sampled network data. In this paper, we develop and evaluate a scalable methodology to accurately detect and monitor IoT devices at subscriber lines with limited, highly sampled data in-the-wild. Our findings indicate that millions of IoT devices are detectable and identifiable within hours, both at a major ISP as well as an IXP, using passive, sparsely sampled network flow headers. Our methodology is able to detect devices from more than 77% of the studied IoT manufacturers, including popular devices such as smart speakers. While our methodology is effective for providing network analytics, it also highlights significant privacy consequences. 
    more » « less